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SUMMARY 

Irregular variations of the void fraction (porosity). c, and the column volume 
fraction taken up by the sorbent stationary phase, p, along the column length (pack- 
ing irregularities) are shown to result in an additional sample peak dispersion (broad- 
ening). This effect is considered in detail in the framework of the theory of linear ideal 
sorption dynamics. An expression for the peak shape is also obtained for the general 
case of non-linear non-ideal sorption dynamics based on the concept of retardation 
time. In this case the packing irregularity is responsible for two effects: dispersion 
which combines additively with broadening caused by the usual non-ideality effect 
(kinetics of mass exchange), and a small peak asymmetry even for a linear isotherm. 
It is shown that the packing irregularity can be taken into account by adding a term to 
the retardation time and. an explicit expression for that term is obtained. Estimates 
show that. for a random packing of spheres, the irregularity-induced dispersion may be 
as much as several tens of per cent of the total effective peak dispersion and increases 
with decreasing packing particle size. 

INTRODUCTION 

The longitudinal dispersion of solute peaks transported through irregularly 
packed beds of granular particles of sorbent by a carrier gas is of major importance in 
adsorbers, catalytic reactors and chromatographic columns. In studies of the sorption 
dynamics in homogeneously packed beds the \-oid fraction, E, and the fraction of the 
column space taken up by the sorbent. ,M, are usually regarded as constants. However, 
for a model comprising random packing of spheres the value of E has been shown (see, 
e.g., refs. 1 and 2) to vary irregularly along the bed length. This phenomenon has also 
been studied experimentally’ (see also ref. 3 and references cited in refs. 1, 2). Even 
though the particles were large in all these experiments. the geometrical scaling of 
packing with particles of different sizes makes it possible to extend the results to the 
smaller particles which are generally used for chromatography. 

The packing characteristics c and p are not completely independent of each 
other: ,u increases with the packing density and with decreasing c. Consequently. 
variations of c along the bed length should result in associated variations in p. In the 
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case of solid adsorbents, ,u corresponds to the entire volume taken up by the particles, 
therefore p = 1 - E. In gas-liquid chromatography the stationary phase is loaded on 
a solid support, filling its pores and comprising a fraction. ~1. of its weight 

where V is the volume, 6 the density and the indices 1 and s denote the stationary 
phase and the solid support. If the sorbent phase is loaded perfectly uniformly, then nz 

is the same for all the particles and: 

p = (1 - e).l% = (1 - c) 17 

This relationship means that there is a linear dependence between E and p. 
In most cases, however, the stationary phase film covering the support surface 

is non-uniform and fills mainly randomly the narrow pores of the support; see refs. 1 
and 4. Therefore, M may vary over a wide range from one particle to another, result- 
ing in variations of p (with respect to its mean, gO) which are weakly connected with 
variations in E. In this case c and p can be regarded as independent quantities. We will 
show that irregularities in the packing and, consequently, in e and ,u, along the length 
of the bed cause an additional peak dispersion both for linear and non-linear iso- 
therms, regardless of whether E and p are interdependent or independent. 

THEORETICAL 

Let D be a set of various realizations (cf:, ref. 5) of the bed packing, the 
porosity, E,(X), and the column volume fraction occupied by sorbent, /A,(X), where Q 
E Q, are random (stochastic) processes (X being a space coordinate along the bed) 
because normally the packing is highly irregular. Since the structure of a packed bed 
of section .yl is the same as that of section s2 (packing homogeneity), the random 
quantities E,(_x~) and a,(.~~) have the same probability distribution density. Then it 
follows that the distribution functions of the random quantities &,(x1), . . ., E,(s,) are 
invariant with respect to shifts along the coordinate X, or that the random process 
E,(X) is stationary. Moreover. from experimental observations2,3, this process can be 
considered as Gaussian. Similar reasoning can also be applied to the random process 
&x) (for definitions see ref. 5, Ch. 2). 

If o E Q is a realization of the packing, then F.,(X) and P_(X) are realizations of 
the associated random processes. The evolution of a band in the theory of linear ideal 
sorption dynamics (chromatography) is described by 

with boundary and initial conditions 

C,(.v = 0, t) = f(t), +i df f(r) = A4 < x 
-x 

C,(s, t = 0) = 0, 0 Q .Y < ^/, 

(2) 
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where C(X, t) is the concentration of the solute in the mobile band and w is the carrier- 

gas flow velocity 

II’ = Us E,(I) = constant 

u,(.Y) being the linear flow velocity. Here f(t) > 0 for t 2 0 corresponds to the inlet 
sample profile, and :I4 is a total amount of the inlet sample. 

Assuming that the isotherm is linear, a,(~. t) = kC,(.u, t), where k is a mass 
distribution coefficient, then: 

[e,,(s) + k&(X)] s,c, + ld,C, = 0 (3) 

Substituting in eqn. 3 

C,[x,(x, t), t& f)l = Gh 0 (4) 

where < is an integration variable, reduces it to a deterministic equation without 
stochastic coefficients: 

lZ’&fa = 0 

(5) 
Qx, = 0, t,) = C,(.u = 0: t) = f(t) 

Because the processes are Gaussian and stationary, the quantities c,(s) and 
/-(J-u) can be expressed in the form 

where ~~ = (E,(X)) and p. = (p,(x)> are expectations (i.e., mean values of random 
variables5) with respect to realizations Q, while E l,m(_~) and pr,,(x) are stationary 
Gaussian processes with zero means. The solution of eqns. 2 and 3 then has the form 

(7) 

where VJS) = i d<[;:r,,(<) + key.,] IS also a random Gaussian process with a zero 
0 

mean (non-stationary in a general case); ref. 5. Ch. 2. 
Hence the solution C,(s, t) of eqn. 3 for a fixed packing LC) is a function of the 

integral containing c,(.u) and pL,(s). Therefore, the eluted peak observed is influenced 
by the structure of the entire packing through which this peak has been propagated. 
Let us consider what this leads to. 

Divide a column of length L into parts of length 1 
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wheren = 1, 2, . . . and r is the mean radius of the packing particles; these parts are 
spaced at n 9 i. z I’, i. being the correlation length* of the stochastic processes under 
consideration. The introduction of parameter d is dictated by the fact that the 
random quantities &,(x1) and a,(.~) are stochastically (randomly) correlated. The 
larger is Ax = x2 - .x1 the weaker is this correlation, and the bed packing structure is 
such that for Ax 9 ,! the correlation can be regarded as having vanished. By virtue of 
the randomness and homogeneity of the packing, the random quantity E,(X) for x E I, 

1x,,, xzp+ 1 ] depends on the value of E,(.u) for x E I,, where s < p, and is in- 
Dependent of the values of the random quantity E,(S) when x E 1, where q < s. To be 
more precise, for a conditional probability 

where P(s, ~1 x’, r) is a transition-probability function**. This property of a random 
process is known as the Markov property (ref. 5, Chs. 2 and 6). Note that a similar 
reasoning is applicable to p,(x). Therefore, the structure of the bed packing is such 
that random processes E,(X) and &_u) and also E 1,0(_x) and p1 Jx) are Markovian 
and Gaussian. 

Each segment 1, of length 1 can be regarded as a sub-realization of w E Q which 
is independent of realizations on preceding segments /,<,_ i. Therefore, in travelling 
along the bed from Y = 0 to .y = L the eluted peak is influenced by almost the whole 
set of realizations from R, which results in self-av;eraging of the solution over the 
realizations (Q) = R. This implies that at the outlet of the column of length L % I, 
with probability 1 an observable peak C,(r = L, t) coincides with the curve which is 
averaged over all realizations Q: CJL, t) = <C,(L, t)). The self-averaging is con- 
firmed also by the fact that for the variance of the random quantity C,.,(s, t) one gets 

9[C,(x, t)] Z +x-l. This implies that for x + x with probability 1 we have (see ref. 
6): 

1 C,(x, r) ~ (C,(r. t))l --f 0 

Before averaging the solution 7 over all realizations Q let us find the probability 

distribution density for the random quantity \‘Jx) = i de[cl.U({) + key.,]. Because 
0 

this process is Gaussian, it is dependent on two moments. the mean (V&X)) and the 
variance ~[v,(x)]. In our case <v,(x)) = 0 while: 

@v,(x>l = <v,(.u) v,(x)> 

= j d5 j dj” ([~l,w(<) + k,u,.,(5)1 h.<X’) + k-&<‘)l) 
0 0 

69 

* The correlation length of the stochastrc process i,(s) 1s usually defined as the scale of its decreasing 
covariance: cov (5,(x,). {Jxz)) = ({Jxr) tw(x2)) - (&,Js,)) (&J.yz)> = .9(.x1 - xz) z exp (- 1 x1 - 
x21 :i.). 

** The conditional probability Pr {a,(_~ E I,) = 1.1 a,(.~’ E 1,) E Y] defines the function P(x, 1.1 x’, yl = 
probability that the random value .sJs’) E Y if for Y < Y’ e,(s) takes the value ,v. This function is usually 
called the transition-probability function. 
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By virtue of stationary nature of the process c~,~,(.Y) + k~,.,(x) we obtain 

(h.&) + ~P*,,,,ml [h(r) + ki*1,,,(5’)]> = a< - l’) 

where A!(t - <‘) is a correlation function (covariance) whose rate of decrease is 
characterized in terms of the correlation length, i. Because the process E~.~(.x) + 
k,~r,,(s) is one-dimensional stationary, Gaussian and Markovian, the Doob theorem 
states that the correlation function S?j< - <‘), where < and 5’ are real variables, has 
the following explicit form (see ref. 5, Ch. 5, paragraph 8) 

where D = g(O) = <[e,~,(s) + k~r.,(s)]~). Then from expression 8 it follows that the 
variance: 

= 2DLu + 2Di2 exp ( - A:;.) - 2DiZ 

For the case of x >> i. we have LS[v,(s)] = 2Dis. This implies that the probability 
distribution density for the random quantity YJX) for x $ i has the form: 

(9) 

Hence, using the expressions 7 and 9 we find that the solution of eqn. 3: with con- 
ditions 2, can be represented for L + i by: 

C,(x = L, f) == (CJS = L. t)) 

(10) 

It follows from eqn. 10 that the eluted peak changes its original profile f(t): gradually 
becoming more and more dispersed. The dispersion disappears in the limit D~.Y + 0. 

It‘ the boundary conditron 2 corresponds to a sharp concentration pulse, e.g., it 
is a delta-function f(t) = .M6(t), then from expression 10 for I + i: 

/ 2 

!_. M.exp [- 

t- E” + kpo 

(C,(s. t)) = 
11’ 

\ ’ 27cDL~ 2Dn.y 1 
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The’ latter relationship demonstrates that in this particular case the irregularity in 
packing along the length of the bed results in a zone broadening which takes the form of 
a Gaussian curve. Note that a solution of eqn. 3 with f(t) = M6( t) for constant coef- 
ficients E(S) = Ed, p(s) = pLg is well known and corresponds to the stationary profile: 

C(x, t) = 446 
i 

t - 
E() + k/q) 

s 
11’ ! 

From eqn. 10 we also find that the function C(.r, t) = (C,(.u, t)) satisfies a new 
equation with a “diffusion-type” term on the right-hand side (see ref. 6): 

C” 

(co + kp,) ;,c + 11‘ ?,C = fi .i:c 
211~ 

(11) 

Eqn. 11 coincides with eqn. 3 for non-random coefficients Ed and p0 because in this 
case D = 0. This means that the packing stochasticity (randomness) affects the 
sample peak evolution, when it travels through a bed, as some effective sorption 
kinetics. From eqn. 11 it follows that these kinetics correspond to the retardation- 
time concept for the description of adsorption-desorption kinetics (see final section, 
Appendix and refs. 7-9) with regard to the retardation-time value: 

T* = Di.!2,&~, (12) 

Effect of’ packing irregularity for non-linear slightl~~ curved sorption isotherm in non- 
ideal sorption dynamics 

The sorption dynamics equation in the framework of the retardation time 
concept (without packing irregularity) is well known and has the form 

ei,C + ll’i-,c = -tl?Jl* (13) 

where a*(.~, t) is the non-equilibrium concentration in the stationary phase which is 
regarded as at equilibrium for a time differing from a given time t by T (time of 
retardation), or u*(s: t) = a(_~-, t - 5). Then. for a non-linear slightly curved isotherm 
in the case of a short retardation time, j k,ri,C 1 < k,. we obtain (see also Appendix): 

a*(.~. t) = k,C(_u. t - 7) + k,C’(\-, t - T) 2 k,C(s, t) - Tk,i,C + kzC’(s, t) 

Substituting this expression into eqn. 13 and allowing for the packing irregularity w-e 
get the non-linear equation with stochastic coefficients: 

Because Pi 3 p _ > 0 (where p- = min pU > 0), after dividing both sides of 
eqn. 14 by P,(X) and replacing the variables 

C&: t) = C[r,(.u. t): t&-, t)] 

(15) 
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we obtain the equation for the function C’(s,. t,) 

i,$” + k,?,,>C’ + 2k,C’i,<>C’ = k,tif C 
0 

(16) 

+7 

C’(s, = 0, t,) = f(t,). 1 dt,, . f(r,,) = .M < x, 
-7 

(16’) 
cI(.&, f, = 0) = 0 

which unlike eqn. 14, does not contain stochastic coefficients E,(I) or ,&s). A general 
solution of expressions 16 and 16’ has been given in ref. 8 where the important case of 
a rectangular sample profile has also been treated: 

(16”) 

If the finiteness of the inlet sample volume is not important, then one can 

consider t, -+ 0 with Cot, = M (the initial condition is a delta-function) and the 
solution of the problem 16, 16” takes the form’ (see also ref. 10) 

x 

where R = kzCoto/k,x is a measure of non-linearity and Q(S) = 4: 
s 

d<. exp 
v’ n 

(- <‘I. Consequently, the solution CJ.Y, I) = C’[s,(r. t), t,(_u, t)] is a fuiction of 

i.e.. of integrals of the random processes z,(.Y) and P,(.Y). As above, the variance of 
the random quantity C,(s, t) for .v 9 g [here Q = max (j.,, 2,) and i,, i,U are 
correlation lengths for the random processes E,,(S) and P,,,(.Y); i., and i., are equal in 
order of magnitude to the mean radius of the particles of the bed] is given by the 
expression ~[C,(X, f)] z X1. Consequently, variations of the random quantity 
C,(.X, t) with respect to its mean (C,(s, t) are insignificant. This implies that, as in the 
previous section, for columns of length L s Q the eluted curve can be expressed as: 
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Pro-0 = 1 

C,(.u = L: t) = (C,(.u = L. f)) = C(s = L. t) 

As in the case of a linear isotherm. substitution of expressions 6 into expressions 15 
yields: 

The integrals of the random Gaussian processes 

&,,(.Y) = i d: c,,,(S), ,6,(s) = -j’ di” /A~.,,,(:) 
0 

are known (see ref. 5, Ch. 11) to be. in turn, Gaussian processes with zero means. 
Consequently, the average over realizations (r) E R for the function 18 has the form 

where ;~k’~,,(~r, 11~~ X) is the probability distribution density of the random quantities 
&,,(x) and fi,(.~) (the parameter x is fixed). 

Let us first consider the case when the quantities e,,(s) and p&s) are indepen- 
dent of each other. Then YYJ~,, f12. s) can be represented as a product of probability 
distribution densities which separately characterize each random quantity’: 

The probability distribution densities n-E and $6 ~ can be found as in the case of a 
linear isotherm. Consequently: 

Substituting the expressions 21 and 22 into relationship 19 yields: 
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The analysis of expression 23 for the general solution 17 of the non-linear eqn. 
14 is complicated. Numerical analysis of the expression 23 and its comparison with 
the solution when stochastic coefficients E,(S) and p,(x) are assumed to be constant 
and equal to c0 and p0 show that the effect of irregularity leads to dispersion of eluted 

peaks. 
In an explicit form the effect of packing irregularity can be examined for two 

particular cases when expression 17 has a simpler form’*“. 

(a) Let 1 RI 4 1 ( small non-linearity) then expression 17 takes the form: 

cot0 
f3.~ f,> = J’4nTk,x, -P 

(t, - k,.r,)” 
4Tklx, I 

(24) 

Owing to the Gaussian property of the random process &s), for .x$ i.,, one obtains 

fi,(_u) z J?. D,n,u Therefore, expression 23, after substitution by eqn. 24, can be 
reduced (to first order in Q/X) to the form 

<c,o, t>> = 
C,t,11: 

$c(4rk, n’p,r + 2D,;.,s + 2D,i,kfx) 
X (25) 

where 

A = (4rk,~~~ + 2D,/,, + 2D,,i,k;) 

Hence it follows that, first, the dispersion of an eluted peak increases if irregularity in 
both parameters e,(.l-) and F,(X) has been taken into account. Secondly, the outlet 
curve becomes slightly asymmetric even for a linear isotherm. 

(b) For the case of / R( $ 1 (high non-linearity) and k, 3 0 (the case of k, d 0 
is treated analogously, see refs. 8, 10) we obtain: t lo 

- k 1 .Y<,] 
0 < t,, - kls, d Jm 

2k,s, . 

0, for other values of the argument 

Then 

(26) 
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where B, = tar’ - (F,, + kpo) x - k,, ‘3 and B, = >k,C,t,p,uvx for the case x $ Q. 
Analysis of expression 27 reveals that a shock-wave type solution of eqn. 26 (resulting 
in the absence of packing irregularity’,” ) is smeared out if the irregularity is taken 
into account, because now this solution convolutes with two Gaussian distributions. 

Let us consider another case when e and p are linearly connected (see first 
section), or p = (1 - E) n. In this case the solution of eqn. 14 has a form analogous to 
17 where: 

(28) 

Following the same reasoning as in the case of independent c and ,K, let us represent 
the random process e,,(s) in the form E,(S) = cO + ::, Js) where c~.~,(s) is a stationary 

Gaussian random process of the Markov type with a zero mean. Let c^,(x) = 5 
0 

d< I &1 ,,(<). Then 

(29) 

where % ‘(E^, s) is the probability distribution density of the random quantity LO(s) 
(the parameter s is fixed). Because the process or ,(s) is Gaussian, stationary and 
Markovian, then for s + i (>_ being the correlation length), $6 ‘(i, s) has the form: 

(30) 

As above, expression 29 can be studied for two extreme ranges of the non-linearity 
parameter R. 

(a) Let 1 RI 4 1; then to first order in j,,j.li one obtains: 
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[tw - (FO + k,p,) xl2 1 
+ 2D,i.,x- (1 - ~k,)~ j 

(b) If / R( $ 1. then 

where 

A=t- 
c,(l - k,n) + k,ll 

. .Y, 
\I’ 

I 

B= 
4k,C&9 (1 - e,)i 12: 

11’ ’ ’ = 1 - kin 

This analysis demonstrates that random variations oft: and p along the bed length 
result in an additional broadening of the eluted sample peak also in the case of a non- 
linear isotherm. 

Let us consider again the case of a linear isotherm in the theory of ideal 
sorption dynamics or chromatography. The effect of packing irregularity can be 
examined either by solving eqn. 3 with subsequent averaging of C,(.v, f) over all 
realizations of the packing R, or by solving the sorption dynamics equation for an 
observable mean concentration, C(s, t). where irregularity is taken into account by an 
additional “diffusion-type” term (see eqn. 11). It should be noted that the sorption 
dynamics equation is usually solved by using the following mean field approximation 
for the average of the product of two random quantities: 

<[E,(X) + k/&)1 ?,C,> = (CJS) + kp,,(s)) ?,(C,,) = (co + kp,) Z,c 

In this approximation eqn. 3 reduces to the form (compare eqn. 11) 

(cc, + k/t,) ;“,c + H’ ?,c = 0 (31) 

whose solution under conditions 2 is the “running wav-e” 

c-(x, t) = f 
c 
t - 

~0 + bo 
.Y 

Ii‘ i 
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which is different from the solution 10 i.e., the effect of packing irregularity is lost in 
this approximation. 

Differentiating expression 10 with respect to .Y and using Z, Y/P-~ = _9’. $W, 

we obtain an equation for the function C(.Y, t) (see also eqn. 11): 

(32) 

In contrast to eqn. 31. eqn. 32 has a non-trivial right-hand term which results in peak 
broadening if there is no longitudinal diffusion. Eqn. 32 is in accord with the phenom- 
enological retardation-time concept mentioned above (see also Appendix and refs. 

7-9). 
As noted in the previous section, see eqn. 14: the sorption dynamics equation in 

the theory of non-ideal chromatography with a linear isotherm has the form: 

[E,(X) -t k,p,(s)] i,c, t 11’ i,c,, = k,T&,(S) ?f c, (33) 

Then, similarly to the derivation of eqn. 32. we obtain: 

Let us the approximation <p$fC,> z pOi:c. Then the effect of irregularity in the 
packed bed can be taken into consideration in the framework of the retardation-time 
model by introducing the phenomenological coefficient z,~~ = z + T* (cf.. eqn. 34) 

where for z* and z we have obtained explicit expressions, see eqns. 12 and A3. 
Using these expressions we can evaluate the contribution of the effect of pack- 

ing irregularity to the total peak dispersion. For example. a typical \;alue of the time T 
in gas-liquid chromatography (see eqn. A3 and ref. 1) is about 1O-5 sec. From ref. 3, 

the characteristics of a packed bed are A = v&l,0 2 0.2 for F* = 0.4 when the ratio 
of the column diameter to the particle diameter, [ = d,‘2r = 16. Then for ordinary 
sorption dynamics conditions 11’ = 10 cmisec, pok, = 10 and correlation length ;_ 1 
4r = 0.1 cm. we obtain from eqn. 11: 

T* 2 0.32.10-5 set (36) 

As observed in ref. 3, the parameter A regularly decreases with increasing l. There- 
fore, the ratio heir is allowed to vary from several per cent to several tens of per cent 

for small 5. 

CONCLUSIONS 

The importance of non-kinetic sources for chromatographic peak broadening 
upon migration through a granular medium was pointed out in ref. 11. But it was 
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Giddings who examined this question systematically and proposed clear concepts for 
evaluating this bed packing effect. see ref. 1 for a review and references. 

The main important difference between that work and our theory can be sum- 
marized as follows. Radushkeyich” and Giddings’ reduced the packing irregularity 
effect to a diffusion process (eddy diffusion, see ref. 1, Chs. 2 and 5) which is re- 
sponsible for additional zone dispersion in columns. In contrast. we have rigorously 
demonstrated that the bed packing irregularity: 

(i) can be reduced to a kinetic process, corresponding to the retardation-time 
concept 

(ii) causes asymmetry of the eluted peak even for a linear sorption isotherm 
Our approach allows one to understand some other types of bed irregularity in 

chromatography, e.g. surface films on stationary phases in open tubular columns. 

APPENDIX 

Retul.cl~Jtir)il-tii?le concept for description qf’so,ption~~l~Jwiirltio?l kinetics 
In the present paper the packing irregularity effect is considered in the frame- 

work of retardation time concept in which non-ideality of the sorption dynamics 
(kinetics) is taken into account through a phenomenological time parameter, z. This 
time corresponds to the retardation of a sample distribution in the stationary phase 
with respect to that in a mobile phase. As shown in ref. 8 (see also ref. 9), for times 
greater than that for diffusion of a component in the liquid film of the stationary 
phase, this phenomenological concept is a rigorous consequence of a well-known 
exact system of equations describing the gas-liquid dynamics of sorption (see, e.g., 
ref. 12): 

(AlI 

Here a = a(_~, ~3. t) is a solute concentration in the stationary phase, C = C(_Y, f) a 
solute concentration in the mobile phase, 1’ a coordinate inside the stationary phase 
film (/I = film thickness), 3, is the diffusion coefficient in the liquid film of the 
stationary phase, Qf is the longitudinal coefficient, and S is the specific area of the 
surface boundary between phases (per unit column length and per unit column cross- 
section). 

Proposition (see r.gfk. 8 and 9,). For 62%,t $ 11’ the system of equations Al is 
equivalent to the following equation for the sorption dynamics 

e?,C(.v. t) + k,p?,a(.u, 1‘ = 0. t) + M.?,C(.X, r) = zfiuk,c^~C(s, t) 642) 

where p = sh and a(s, 1% = 0, t) = k, C(s, t) + . . For the retardation-time parameter 
one obtains: 

z = h’;.39, (A3) 
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